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Abstract-Propagation of the torsional waves in a thick elastic plate is analyzed under torsional impact
loading on the circular regions of the upper and the lower surfaces. The solution is obtained by means of the
Laplace and the Hankel transforms. Each stress component is represented by the sum of terms involving
elliptic integrals. The interference and the reflection of the torsional waves in the plate are considered in
detail. Numerical results for the variations of the stresses with time are shown graphically.

I. INTRODUCTION
It is very important in practice to investigate the dynamic problem of torsional impact. On
account of this, some investigators have studied problems of this kind. Reissner [1] first dealt with
the torsional vibration problem on an elastic semi-infinite solid subjected to a surface torque,
initially undisturbed, which varies periodically with time and acts on a circular region of the
surface of the solid. Reissner and Sagoci[2] analyzed the problem of a semi-infinite solid loaded
by a periodic surface displacement on a circular region and free from loading on the remaining
part of the boundary. Eason[3] has obtained a general solution of a semi-infinite solid for
torsional impact loading and has considered in detail for three particular types of impulsive
loading. He also discussed briefly with the step-function loading.

In the present paper, the author treats the torsional impact loading of a thick elastic plate,
which is initially undisturbed. The solution is obtained by means of the Laplace and the Hankel
transforms. The inverse Laplace transform is obtained by using the convolution theorem. Stress
components are represented by the sum of terms involving elliptic integrals. The interference and
the reflection of the stress waves in the plate are considered in detail.

2. ANALYSIS

Let (r, 8, z) be the cylindrical coordinates as shown in Fig. 1 and let the thickness of the plate
be 2h. We assume that the step-function type of surface shear loads (Tgz)z~±h =
TorH(a - r)H(t)/a act on the circular regions of radius a on both surfaces of the plate and the
remaining ones are free from loading. From the axisymmetry of the torsional impact to the plate,
all quantities depend on r, z and the time t. The non-zero displacement is the circumferential v,
and the stresses corresponding to it are the shear stresses Tg% and TrfI. Then the equation of motion is

(1)

where C2[ = (8O/'Y)I12] is the velocity of the shear wave and G, 'Y, g are respectively the shear
modulus, the weight per unit volume and the acceleration of gravity.

Introducing a stress function A3(r, z, t) defined as

iJA3v=--
iJr

(2)

and su.bstituting equation (2) into equation (1), we can get A3 as the solution of the wave equation

(3)
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Fig. I. The thick plate subjected to torsional impact.
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Tez and TrlJ are given by using equation (2),

The initial conditions are written as follows:

and the Laplace transform of equation (3) with respect to t is

where

-( ) i~ -pI d PA3 r, z, P = A3e t, a =-.
o C2

(4)

(5)

(6)

Considering that Tez is an even function with respect to z. we can get as the solution of Eq. (6) for
the problem

(7)

where In (er) is the Bessel function of the first kind, and A (e) is an arbitrary function determined
by the boundary condition.

From the Laplace transform of the boundary condition, we obtain

1i~ r 1-2 f3eA (OJ.(gr) cosh f3h de = To - - H(a - r)
o a p

(8)
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where H(x) is the Heaviside's step function. After A(~) is determined by means of the inverse
Hankel transform of equation (8), the Laplace transforms v, 1'8.. TrlI of V, TIlz' Tr8 are given
respectively as follows:

-_ Toa ("" sin {3z J ()d
v - G )0 p{3 cosh {3h Mr)J2 ,a "

- i"" cosh (3z
T8% =Toa h fJ.h JMr)JMa) d~,

o P cos fJ

_ ("" sinh {3z
Tr8 = - Toa Jo p{3 cosh (3h gJMr)JMa) dg.

3. INVERSE LAPLACE TRANSFORMAnON

Now, we expand (cosh {3hfl to an infinite series of exp (-2{3h) and obtain

where

xn =(h -z)+2nh,(~O). Yn =(h +z)+2nh,(~O).

Here, if we use the inverse Laplace transform formulae

(9)

(10)

L -I {*e-IJX
.} = c2Jo(fV(T2- X/»H(T - x.), }

(11)

L -I(e-IJX.}= S(T - xn )-V(~;~~//MV(T2-xn
2»H(T - xn )

where T =c2t, and Sex) is the Dirac delta function, the inverse Laplace transforms of T9z and Tr8
in equation (9) will be obtained by the convolution theorem as follows:

..T!!.= i (-It [..!; H(a - r){H(T -xn )+ H(T - y.)}-{g(x.) +g(Ynm,)
Toa .=0 a

(12)

..!!!. = - i (-Irff(x.) - f(y.)}
Toa .=0

where

f(x.)=H(T-x.) f dp L"" eJo(gV(p2- x/»JMr)JMa)dg,

g(X.)=H(T-Xn ) r \I(:~ 2)dp (""{!Jl(ga)-gJo(ga)}J.. p x. Jo a

x JMV(p2 - xn
2»JMr) dg.

To integrate equation (13) with respect to g, we use the integral formula[4]

!
0, (a < Ib - cl and a> b +e),

L"" ,'-"J..(ag)Jv(bg)Jv(cg)dg = ~~~~~I.. sin.. - 1'2<p e{.. -l/2l-t<lp~:II2(cos <p),

(Ib - el < a < b +c)

(13)

(14)
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a, b, C >0. J,1, > -i, v> -1,!J,1, - vi: an integer,

ip :::;: COS-I {(b 2+c2- a2){2bc},

and P~:'I~(cos ip) is the associated Legendre function. Thus, f(xn ) and g(xn ) are non-zero
only in la - rl < Y(p2 - xn

2
) < a +r and are given in this interval as follows:

!(Xn ):::;: _1_ H(r _ xn ) r c~s 2~' dp', I
7Tar Jx. sm ip

(15)
( ) _ Xn H( ) r 1 {2. cot 'P } d

g Xn -7T r-xn Jx. \!(p2_ X/) tj2SInip- r\!(p2- x/) P

where

r2 _ a2 + 2 _ X 2 2 2 2 2
_ -I P n A.' _ -1 a + r +Xn - p

ip - cos 2r\!(p2 _ xn2) , 'I' - cos 2ar .

Putting

an:::;: Y«a - r)2+ Xn\ bn :::;: Y«a + r)2+ x/),

a~:::;: Y«a - r)2 + Yn2), b~:::;: Y«a + r)2 + Yn2),

we get

. _ ~ l(bn2_p2)(p2_ n 2) ~ I(b 2 2)( 2 2)V _ _.... "_ V n -p p -an
sm ip - 2ry(p2 _ x/) ,sm ip - 2ar .

Then, we can rewrite equation (15) as follows:

(16)

Moreover, to express the integrals with respect to p of equation (16) by elliptic integrals, we put

2e:::;:1-::2 , p2:::;:bn
2(1-esin2n,

b/ - p2 :::;: bn2e sin2
(, p2 - a/:::;: b/e cos2

(,

p2 _ x/:::;: (bn2
- x/)(l- Ao sin2

(), Ao :::;: 4ar/(a +rl,

and

Then, equation (16) becomes
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(17)

and F«(, k), E«(, k), II«(; - Ao, k) are respectively the elliptic integrals on the first, second and
third kinds. Similarly, f(y.) and g(y.) are obtained by replacing a~, b~ and y. for a., b. and x. in
equation (17) respectively. The stresses are easily calculated by equations (12) and (17).

In particular, the stresses on the middle plane of the plate are

Trll = 0,~ = 2 i (-1)" {-; H(a - r)H(T - x.) - g(x.)}.
Toa .-0 a

The stresses on the surface are, for example,

(T9Z)Z~h =.!... H(a - r)H(T) )
~a a 2

,

(Trll)Z~h=-f(xo)-2 ±(-l)·f(x.).
Toa n~1

At r = a on the surface, (Trll)z -h.r~a tends to negative infinity, because

(18)

(19)

4. STRESS WAVE FIELDS AND NUMERICAL RESULTS

The stress wave fields can be determined by regions in which the stresses are non-zero. The
non-zero regions of each term in equation (12) are

rt? H(a - r)H(T - xn )-+ T i: 2nh, h i: z ?; - h, T?; xn, a?; r,

rt? H(a - r)H(T - Yn)-+ T i: 2nh, h E; z ?; - h, T?; xn, a ?; r.

g(xn) or f(x,,)-+Ti:2nh, hE; Z i:-h, T i:y«a - r)2+{z -(2n + l)h}2),

g(y,,) or f(Yn)-+ T i: 2nh, h i: z i: - h, T E; y«a - r)2 + {z + (2n + l)h }2),

Thus, the stresses in equation (12) are rewritten

(20)
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THz = ~ (-1)" [{-; H(a - r)H(T - xn) - g(Xn)} + {-; H(a - r)H(T - xn) - g(Yn)}],)
~a n~ a a

n (21)

~= - i (-I)"{f(xn)- f(Yn)},
Toa n~o

where no is the maximum integer number of T Ih.
The terms Toa{(rla 2)H(a - r)H(T - xo) - g(xo)} and - Toaf(xo) express respectively T9z and TrH

in the case of a semi-infinite solid (z ~ h) subjected to torsional impact on the surface. Similarly,
Toa{(rla 2)H(a - r)H(T - Yo) - g(yo)} and Toaf(yo) correspond to T9z and Tr9 in the case of a
semi-infinite solid (z ~ - h) subjected to torsional impact. These stresses propagate in the plate
and reflect on the another surfaces. The stresses for n = 1 in equation (21) represent the ones
generated by these reflected stress waves. Generally, the stresses for n-th term in equation (21)
represent the ones generated by the reflected stress waves of (n - l)-th term on the surfaces.
Figure 2 shows the stress wave fields for T9z'

r

r

(e) 2fl~L<4fl

Z

r

: ~(1,)
I

o ~-~----------3'-G~-~---f~
I

iN.)

Fig. 2. The stress wave field.

The stresses fluctuate discontinuously at the arrival of the wave fronts of the reflected stress
waves. Since the stresses corresponding to each stress wave are calculated independently in
closed forms by equation (17), the variations of stresses with time are obtained rigorously by the
superposition of the results.

Figure 3 shows f(xn), (n = 0,1,2,3, .....), and Tr9 at rIa = 0·9 on the upper surface for the
case of hla = 1·0. f(xo) coincides with Tr9 in the case of semi-infinite solid Tr9 in the case of the
plate is obtained by the superposition of f(xn), (n = 0, 1,2,3, .....).

Figure 4 shows (Tr9)z ~h for h Ia = 1·0. (Tr9), ~h is infinite at r = a and becomes small with the
increase of distance from this point. The tendency of the fluctuation is similar to than in Fig. 3.



On the torsional impact of athick elastic plate 809

rI\r f\ ~I f1 v
~

V i! Ir 2 fL""1
I

\ Jl '"G ~ .- ~a.l':C 2 r,n-!~Q x .\. Y& Za(- - j \" ty"l"" ..-.~ ~~ -:-" T.,_
n-.

I o 'f1'1
1-21a.-...l
I I

76s43.2,....., . '-,J.

I 1\, 11.=<0 I I
I

~

\

I

I I
n~1 11"'2 1;<._3 r,-4

/\ f\.

0 I .2V 3 4 ....... 5 6 7 ~ j '"'::In!~

o
o

o

-0.5

Fig. 3. The interference ofthe stress waves, (hla = I, ria = 0,9).
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Fig. 4. The variations of (TrlI l, •• with time. (h Ia = 1l.

Figure 5 shows (To,), -0 for hIa =1·0. (To,): -0 in r ~ a fluctuates discontinuously at
Tla = 1,3,5, ...... However, the discontinuous fluctuations tend to vanish with the increase of
time. (Tez)••o in r > a has never such discontinuous fluctuations.

Figure 6 shows (Trl/)z=h at rIa =0·9 for both cases of hla =0·5 and 2. In the case of the plate
thickness being small, (Trl/)z=h fluctuates complicatedly because the stress waves repeat
numerously the reflection on both surfaces. In the case of the plate thickness being large, the
affect of the reflected stress waves is small, and (Trl/ )'=h becomes nearly equal to the result of the
semi-infinite solid.
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o LO 2.0 'Va.. 3.0

Fig. 8. The asymptotic values of stresses, (h Ia = I).

Figure 7 shows (7"8Z)z~O at ria =0,5 for both cases of hla == 0·5 and 2. The tendency of the
fluctuation is similar to the one in Fig. 6.

Figure 8 shows the asymptotic values of stresses for hIa =1-0.
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